EVOQUER: Enhancing Temporal Grounding with Video-Pivoted BackQuery Generation

Yanjun Gao¹, Lulu Liu¹, Jason Wang¹, Xin Chen², Huayan Wang³, Rui Zhang¹ Pennsylvania State University¹, Kwai.Inc^{2,3}

{yug125, lzl5409, jjw6188, r.zhang}@psu.edu¹, xinchen.hawaii@gmail.com², wanghuayan@kuaishou.com³

Background -- Temporal Grounding

- Predicting a time interval corresponding to natural language query input
- Addresses the temporal, semantic alignment between vision and language as well as tasks like visual storytelling
- Recent work has emphasized modeling the semantic mapping of verbs and nouns to actions and objects

Contribution -- EVOQUER for Temporal Grounding

- Utilizes a closed-loop system, borrowing the idea of feedback-error-learning (FEL)
- Adapts a video-pivoted query simplification task
- Pairs a state-of-the-art temporal grounding model (LGI) with a video machine translation model

INTRODUCTION

• Strongly Supervised Learning for Temporal Grounding (LGI -- Mun, Cho, Han, 2020)

- Visual Pivoted Translation
- Provide more fine-grained semantic discrepancy between video features and text
- EVOQUER: Enhancing Temporal Grounding with VideO-Pivoted BackQUERy Generation

EVOQUER -- METRICS

- R@tloU: The recall at different thresholds between prediction and ground truth. Thresholds were set as 0.3, 0.5, and 0.7.
- mIoU: The average of temporal interval recall from all threshold levels.
- Jaccard similarity: The intersection over union between prediction and ground truth.
- **BLEU:** A standard evaluation metric for machine translation that measures n-gram word overlap.

EVOQUER FRAMEWORK

- (LGI) Input: A set of queries and their full-length video clips
- (LGI) Output: Prediction of time intervals for the queries
- (Translation) Input: Queries and 32 frames video features trimmed by the predicted time intervals
- (Translation) Output: Prediction of simplified queries with only verbs and nouns

- LGI Loss: Loss for predicting time intervals using LGI model
- NLL Loss: Loss for simplifying queries using VMT translation framework
- Extract verbs and nouns as simplified version of queries
- Combine NLL loss with LGI loss to update the networks
- Optional Setting: VSE Loss (Faghri et.al 2017)

Experiment with an alternative setting of the translation module: generate simplified queries from video input and apply VSE loss to enforce the mapping between video features and text features

DATASET -- CHARADES-STA

- Charades-STA is a widely used benchmark dataset for temporal grounding, consisting of 9,848 ~ 30 second videos.
- 27,848 text queries -- Maximum of 10 words per query
- Train/Valid/Test Split (%) -- 50/25/25 respectively

TEMPORAL GROUNDING RESULTS

Performance on Charades-STA test set (LGI model and EVOQUER MODEL)

Model	R@0.3	R@0.5	R@0.7	mIoU
LGI	71.54	58.08	34.68	50.28
Evoquer	71.57	57.81	35.73	50.48
EVOQUER +VSE	70.46	57.81	35.51	50.16

Table 1: Results on Charades-STA test set from the LGI model and two EVOQUER variants.

• Translation quality measuring by Jaccard similarity, BLEU Unigram (BLEU1) and Bigram (BLEU2)

Model	JaccSim	BLEU1	BLEU2
Evoquer	51.98	53.04	42.47
EVOQUER +VSE	6.37	7.96	1.20

RESULTS ANALYSIS

 Statistics of samples showing improvements and drops for EVOQUER model compared with LGI model

		Both >= $R@0.3$			Both
		Evoquer †	Evoquer ↓	Same	< R@0.3
C_1	nt.	441	362	1347	777

Table 2: Counts of samples that are scored by R@tIoU with four categories from comparison between EVOQUER and LGI model. Three of the categories are from samples where both models achieve recall equal and above threshold 0.3: samples that are improved (EVOQUER ↑), samples with performance drops (EVOQUER ↓), and equal performance with at least R@0.3 (Same). The fourth category is when both perform below R@0.3 (Both <R@0.3).

Input query: person closing the door to the entryway (Simplified: close door)
Model prediction: Evoquer: close door book door

Evoquer+VSE: open door open door

Input query: a person holding a glass opens the refrigerator (Simplified query: hold glass open refrigerator)

Model prediction: Evoquer: hold bag open refrigerator
Evoquer+VSE: play take take put

CURRENT AND FUTURE WORK

Current:

- On the left, EVOQUER successfully predicts time interval and simplified queries as ground truth.
- On the right, EVOQUER predicts hold bag rather than hold glass due to their similar shape and size.

Future:

- Extend EVOQUER on a multitude of other temporal grounding datasets such as ActivityNet, MSRVTT, DiDeMo.
- Explore other parameter settings to improve performance such varied learning rate, number of epochs, batch size, etc.

REFERENCES

- Mun, Jonghwan, Minsu Cho, and Bohyung Han. "Local-global video-text interactions for temporal grounding." *CVPR*. 2020.
- Faghri, Fartash, et al. "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives."